
The model as developed in experimental landscapes was not able to 
reproduce the observed soil moisture dynamics, with root mean squared 
error (RMSE) ranging from 0.09 to 0.50. Soil moisture in irrigated yards 
was more variable than predicted, either with additional regular pulses 
(flood-irrigated lawn) or irregular peaks (sprinkler, drip, or hose 
irrigated). Additionally, soil moisture in non-irrigated xeric yards was 
much higher than predicted given only precipitation inputs. 
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How well does an experimentally calibrated soil moisture 
model represent actual soil moisture dynamics in diverse 
residential yards around Phoenix? 

Outdoor irrigation is a main target for residential water conservation 
(Gober et al. 2016). However, irrigated vegetation provides residents 
with a variety of services, such as aesthetics, recreation, and cooling 
(Larson et al. 2009). Balancing water conservation with vegetation 
service provision necessitates an understanding of how much water is 
needed to provide the desired services and how much current use 
could be reduced. To that end, a point model of soil moisture was 
modified to represent rooting zone soil moisture in residential 
landscapes (Volo et al. 2014). 

Relative soil moisture s is volumetric water content (VWC) normalized 
to the porosity of the soil n, and is modeled as 
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Figure 1. Diagram of soil moisture model water inputs and outputs 
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Figure 2. Experimental yards used for calibration. 
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Equations for Leakage, Runoff, and Evapotranspiration 

Model parameters were calibrated at two sites in an experimental 
residential landscape in Mesa, AZ (Fig. 2), one dominated by lawn and 
flood-irrigated and the other primarily gravel with drip-irrigated 
shrubs (xeric). Calibrations at the xeric site were performed for an 
irrigated and non-irrigated location. The calibrated model was used to 
estimate landscape water needs based on soil moisture-driven plant 
stress (Volo et al. 2014, 2015). However, validation with additional 
data is needed to test these results across a diversity of landscapes 
and management practices in Phoenix. 

Figure 4. Soil moisture measured in three residential lawns in the Phoenix 
metropolitan area. (A) Continuous water inputs through winter. (B) Regular 
uniform water inputs in growing season only. (C) Irregular water inputs in 
growing season only. 
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We measured soil moisture continuously over a 1-3 year period in 11 
residential yards with varying landscape types in the Phoenix metropolitan 
area. Average monthly soil moisture (VWC) was similar in lawns (0.21, 
range 0.08-0.28) and xeric sites (non-irrigated 0.20, range 0.13-0.25; 
irrigated 0.14, range 0.05-0.25) and lowest in deserts (0.09, range 
0.01-0.16), but varied within landscape type (Fig. 3). 

Figure 5. Comparisons of 
observed and modeled soil 
moisture in each 
landscaping and irrigation 
type. 

1.  Non-irrigated yards had much higher soil moisture than predicted, 
suggesting that these yards receive additional water inputs from 
surrounding areas or support lower rates of water loss than predicted. 
These results suggest that there is potential for significant water 
savings by reducing irrigation in xeric landscapes. 

2.  Soil moisture variation across yards is greater than represented by 
experimental landscapes, which highlights the problem of a “one-size-
fits-all” approach to residential outdoor water conservation. 

3.  Recalibration and extension of this model to represent diverse yard 
characteristics such as irrigation location, method, and timing, plant 
biomass and water use characteristics, or soil properties could yield a 
more detailed and accurate prediction of actual homeowner water use 
and potential for water conservation in residential yards. 
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