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Introduction

During mobile transect measurements, it is imperative to relate the

measured values to sensor surroundings, which vary quickly in urban

areas.

� Problem:
Some sensors adapt slowly to the atmospheric conditions within the

traversed microenvironments

� Measure for the inertia of a sensor:
The - the time [s] that a sensor needs to adapt to 63 %time constant τ₆₃

of an impulse change

� The dy a ical error:n m
Larger time constants the recorded air temperature curvesmooth

because local maxima and minima cannot be resolved [2, 3].

Instrumentation: The quest for ground

truth

Study site and transect runs

Conclusion and future work
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Research question and contribution

� How can measurements with a relatively slow

sensor be corrected...

... in order to estimate high-resolution air temperature observations in

an urban micro environment?climate

� Studies on sensor lag correction have been carried out in the context

of radiosonde or airborne temperature measurements (e.g., [4, 5]), or

in a micrometeorological context outside of urban areas (e.g., [2, 3])

� Studies on sensor lag correction in an urban setting are rare.

Correction results
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Fig. 1: The measurement platform. All sensors are mounted on a pole, which is
attached to the front side of a golf cart. Data logger: Campbell Scientific CR1000.

Fine-Wire
Thermocouple
(FWT)

Platinum Resistance
Temperature Detector
(RTD)

Model Campbell
Scientific Fw3,
diameter:
0.0762 mm

Campbell Scientific
HC2S3 (air temperature
and rel. humidity probe)

Mounting
height

1 m and 2 m 1 m and 2 m

Material Chromel-
Constantan

Platinum (resistance at
0°C = 100 Ω

Accuracy ± 0.1 °C
(at 23 °C)

± 0.1 °C
(between 0 °C and
40 °C)

Time
constant τ₆₃

0.6 s in still air
(typical value,
see [7])

172.7 s in still air (stdv =
0.08 s);
46.2 s for wind speeds
> 3.2 m/s (stdv = 3.7 s)

Sampling
frequency

1 Hz 1 Hz

Methodology

� Basic assumption:
The measured temperature is the true temperature, convoluted with

the time-derivative of the impulse-response function [2, 3, 4, 6].

� Solution: Deconvolution!
Deconvolution procedures are described in [2, 3, 4, 6]. We base our

approach mainly on [2], while optimizing the choice for two

algorithmic parameters.

Fig. 3: Finding the optimal parameter choice for the correction algorithm by computing the root mean square error (RMSE), the
mean absolute error (MAE), the maximal absolute error (Ae ), and the index of agreement (d, as described in [5]) betweenmax

corrected PRT data and the data from the fast FWT sensor.

Fig. 4: Results of the parameter optimization experiment, averaged over
all available data sets.

The final method follows 5 steps:
(based on the parameter study result

1. Smooth time series using = 64lwin

2. Apply correction filter using τ τ₈₆ ₆₃= 2* = 92.42

3. Fast Fourier Transform of both the time-derivative of the

impulse response funtion ( ) and the smoothed PRT= H(f)

data ( ) [2]= G(f)

4. Division of G(f) by H(f) to retrieve the true temperature

spectrum [2]

5. Inverse Fast Fourier Transform [2]

Fig. 5: Correction results when applying the algorithm as outlined above. The scatterplots show the improvement of the RMSE
between PRT and FWT data after applying the correction. The time series below illustrate a best and a worst case scenario.
FWT data was smoothed dependend on the minimal physical microclimate scale and platform velocity.

� Applying the determined sensor lag correction procedure improves

the agreement between PRT data (slow sensor) and FWT data (fast

sensor) in all investigated settings.

� The results need to be verified for data sets representing different

settings, e.g. in terms of sensor setup (other time constants) or season

(winter / spring).

� The time constant of the Pt100 RTD was determined experimentally.

� Air temperature time series were time-detrended individually.

� Since the time constant of the applied FWTs is very low, their observations can be

used as a ground truth for the evaluation of algorithmic parameter choices.

Fig. 2: The study site in . The sample transect runs are plotted on top of a high-resolution land-Power Ranch, Gilbert, Arizona
use map [1].


