

1. Introduction

• Arid, urban ecosystems experience high rates of land-use change including the installation of managed xeriscapes and irrigated turfgrass lawns in residential and commercial areas^[1].

• Regular use of water and fertilizers in mesic, turfgrass modifies soil microbial community structure, lawns distribution, and function, which can alter N cycling pathways in arid cities^[1,2].</sup>

unclear how land-use modifications affect • It İS belowground soil food webs in arid, urban areas.

2. Research Question and Hypothesis

• Who are the major groups of soil flora and fauna in an urban belowground ecosystem and how do populations change during the dry and monsoon seasons and across landscape type?

• We hypothesize that increased resources (water and SOM) in mesic lawns will lead to an increase in soil food web biomass and functional groups relative to arid systems.

3. Methods

• In the summer of 2011 and 2012, we collected 96 soils at 10cm depth from 4 different land-use types (Fig. 1) within the Phoenix Metropolitan Area during dry and monsoon seasons.

• Soils were extracted for biomass counts of the major belowground feeding groups and were analyzed using a proc GLM in SAS for seasonal and site differences^[3] and Excel for regression analysis.

•Food web visualizations and network information were derived using EcoNet 2.2 and FOODWEB in R.

Fig. 1 – Central Arizona Project (CAP) LTER sites used in this study.

Fig 2a-2d -- Visual depiction of food webs for A) Mesic; B) Xeric; C) Desert; and D) Desert+ sites during the monsoon season. Networks were constructed based on maximum trophic richness counts made in each site. Nodes in the network represent the following groups: Bacteria (Bac); Fungi; Roots; Root Feeding Nematodes (RootNem); Flagellates (Flag); Amoeba (Amoe); Ciliates (Cil); Bacteria Feeding Nematodes (BacNem); Omnivorous Nematodes (OmNem); Fung Feeding Nematodes (FunNem); Predatory Nematodes (PredNem); Cryptostigmatid Mites (Crypt); Other Fungal Feeding Mites (OtFunMi); Collembola (Collem) Nematode Feeding Mites (NemMi); and Predatory Mites (PredMi) Fluxes indicate energy flow via feeding interactions.

Fig 3a-3b - Correlation between total biomass (3a) and trophic richness (3b) and SM content for samples taken in the dry and monsoon season.

Land-use type changes the belowground food-web in an arid, urban ecosystem.

Karl A. Wyant, Yevgeniy Y. Marusenko, Sharon J. Hall, and John L. Sabo School of Life Sciences, Arizona State University, Tempe, AZ

Fig 1a and Fig 1b - Brackets indicate significant seasonal difference within a site. Letters indicate a significant difference between sites for each season (p<0.05).

and SOM for samples taken in the dry and monsoon season.

4. Results

• Fig. 1A - 1B - The number of trophic groups and biomass were highest in the mesic sites, across both seasons, relative to the arid sites (**p<0.05**). •Fig. 1B - There was a significant seasonal increase in food web biomass across all sites (p<0.05). •Figs 2A - 2D - Visual depictions of soil food webs at each site show that mesic food webs are more complex than their arid counterparts. •Figs 3A&3B - 4A&4B – Food web biomass and trophic richness are significantly correlated with SM & SOM for both seasons (p <0.05). •Figure 4– Link density is highest in the mesic plots during the dry and monsoons. Furthermore, maximum connectance increases only in the xeric plots during the monsoon season (not shown). **5.** Conclusions ~ Double the number of trophic levels and \sim 4-8x more belowground biomass than arid systems • NPP of Turfgrass Lawns -1,020 g m⁻² yr ^{-1[4]}; NPP of Sonoran Desert -150 g m⁻² yr ^{-1[5]} • Unclear whether urban soil food webs are structured primarily by SM or SOM 6. Next steps Use FOODWEB^[3] model to measure N and C flux between trophic groups. This will help complete our understanding of the interactions between soil properties, urban soil food webs, and N cycling. References 1. Hall, S.J., B. Ahmed, P. Ortiz, R. Davies, R.A. Sponseller, and N.B. Grimm. 2009. Ecosystems. 12:654-671. 2. Martin, C. 2010. CAP-LTER Poster Symposium 3. Hunt, H.W., D.C. Coleman, E.R. Ingham, R.E. Ingham, E.T. Elliott, J.C. Moore, C.P.P. Reid, and C.R.

- Morley. 1987. Biology and Fertility of Soil. 3:57-68.

4. Falk, J.H. 1976. Energetics of a Suburban Lawn Ecosystem. Ecology 57: 141-150. 5. Chapin, III, F.S., H.A. Mooney, M.C. Chapin, and P. Matson. Principles of Terrestrial Ecosystem Ecology. Springer Science, New York, New York.

Acknowledgements

This project was supported by the Arizona State University 2011 Graduate and Professional Student Association JumpStart Grant, AZ Garden Federation – Gertrude Claypool Fund; and the 2011-2012 CAP-LTER Grad Collaborative Grant. Thanks to Hall Lab members, Sabo Lab Fig 4a-4b - Correlation between total biomass (4a) and trophic richness (4b) members, and Dr. Ferran Garcia-Pichel for their help. Corresponding author: K.Wyant (<u>kawyant@asu.edu</u>)