USE OF NITROGEN BUDGETS AND N₂ FLUX MEASUREMENTS TO ESTIMATE THE ROLE OF DENITRIFICATION IN BROWNFIELD **STORMWATER WETLANDS** Monica M. Palta¹, Peter Groffman², Stuart Findlay²

INTRODUCTION

- Urban areas are net sources of excess inorganic nitrogen in waterways
- Wetlands provide desirable ecosystem services such as NO₃⁻ removal via denitrification (microbial conversion of NO_3^- to N_2)
- Despite a broad understanding of environmental factors controlling rates of denitrification, few robust & predictive models have been constructed and validated for wetlands
- N₂ flux is difficult to measure, resulting in primarily measurements of potential or incomplete denitrification rates

STUDY OBJECTIVES

- (1) Utilize in situ measurements of N₂ gas production and NO₃⁻ loss in sediment profiles to calculate denitrification rates
- (2) Examine the role and importance of denitrification in inorganic nitrogen cycling and removal in urban brownfield wetlands

METHODS

• Denitrification measurements:

- Peepers (a) to collect pore water in sediment (2009–2010) - Membrane Inlet Mass Spectrometry (MIMS) to analyze pore water for N_2 , Ar, and O_2 (b)

• Nitrogen loading to wetlands:

- Atmospheric dry and wet deposition concentrations determined using literature values (Liberty) and a 2005– 2006 field monitoring study (Teaneck)
- Stormwater concentrations monitored at Liberty in 2008 and at Teaneck in 2005–2006
- Volumes of stormwater entering and exiting wetlands estimated using SWMM and Mike SHE/Mike 11 models
- Volumes of precipitation calculated from NOAA gages

• Calculations:

- Saturation normalized N₂/Ar ratio calculated using the following equation: $(N_2/Ar)_{sat} = (N_2/Ar)_{molar ratio} / (N_2/Ar)_{saturation}$ equilibrium ratio
- Diffusive N_2 , NO_3^- and NH_4^+ fluxes in sediments calculated at the point of maximum slope of all dissolved constituents in the profile and where $(N_2/Ar)_{sat} > 1.0$

REFERENCES. Hartnett, H.E. and S.P. Seitzinger. 2003. High-resolution nitrogen gas profiles in sediment porewaters using a new membrane probe for ometry. Marine Chemistry 83: 23-30; Gao, Y., Kennish, M. J., and A.M. Flynn. 2007. Atmospheric nitrogen deposition to the New Jersey coastal waters and its implications. Ecological Applications 17: S31-S41; Song, F. and Y. Gao. 2009. Chemical characteristics of precipitation at metropolitan Newark in the US East Coast, Atmospheric Environment 43: 4903-4913

¹ School of Life Sciences, Arizona State University, Tempe, AZ 85287; ² Cary Institute of Ecosystem Studies, Millbrook, NY 12545

fluxes, white arrows indicate fluxes

• Atmospheric fluxes into the water and soil N pools include both wet

dsonRiverBasinProjects_home.html

INORGANIC N INPUTS IN THE NORTHEASTERN US ARE HIGH DUE TO URBAN STORMWATER AND ATMOSPHERIC DEPOSITION. Rivers and estuaries in

the region are subject to associated eutrophication problems; public parks are often an intermediary between urban stormwater from upland areas and adjacent waterbodies.

LIBERTY STATE PARK AND TEANECK CREEK CONSERVANCY ARE URBAN **BROWNFIELD SITES SUPPORTING SEMI-PERMANENTLY FLOODED WETLANDS.** White outlines delineate low-lying semi-permanently flooded areas. Flow in both wetlands moves west to east—surface water at the far left side of each photograph.

STORMWATER MONITORING AT LIBERTY, 2008

SIMILAR CONCENTRATIONS IN STORM AND RAINWATER ENTERING THE WETLANDS.

25 50 100 Meters

PRODUCTION. Peepers under flooded conditions demonstrated low dissolved O_2 . which appeared to promote NH_{4}^{+} production via mineralization of plant material, but little denitrification due to low NO_3^- availability (example from Liberty shown).

DRY-DOWN CONDITIONS RESULT IN HIGH NO₃⁻ PRODUCTION ABOVE THE SEDIMENT-WATER INTERFACE, AND HIGH N₂ PRODUCTION **BELOW THE SEDIMENT-WATER INTERFACE.** Peepers under dry-down conditions demonstrated lower overall NH_4^+ production. N₂ production was much higher than under flooded conditions, and coincided with a drop in dissolved O_2 and NO_3^- at the sediment-water interface (example from Teaneck shown).

	Dry Conditions	Wet Conditions	
Surface Water N Fluxes (IN)			
Dry Deposition			REVEALED I HAI
N-NO3 ⁻	3,090	3,090	WETLANDS ARE A SIN
N-NH4 ⁺	4,511	4,511	
Wet Deposition	[Vo1: 36.0 L]	[Vol: 57.3 L]	FUR NO_3 AND A SUUI
N-NO3	2,592-34,380	4,125-54,722	OF NH₄+. Budget from Liber shown here. Denitrification die account for a large amount of
N-NH4 ⁺	576-48,456	917-77,125	
Overland flow	[Vol: 35.2 L]	[Vol: 237.9 L]	
N-NO ₃ ⁻	2,498-40,853	16,886-276,107	
N-NH4 ⁺	1,045-17,347	7,061-117,237	nitrogen loss from the wetla
<u>Fluxes Between Water and Sediment</u> N-NO3 ⁻ (OUT water pool, IN sediment pool)	3 640-1,900	590-630	likely because denitrification limited by NO ₃ ⁻ availability
DenitrificationN-N ₂ (IN atmosphere, OUT sediment pool)	5 1,000-2,580	620	NH ₄ ⁺ produced in sediment dissolves into porewater and exits wetland via groundwater
N-NH4 ⁺ (IN water, OUT sediment)	4 3,740-8,160	3,050-6,530 <	

ACKNOWLEDGEMENTS. Thanks to the Environmental Protection Agency's STAR program and Liberty State Park for providing funding for this project. Thanks also to Joan Ehrenfeld and the Ehrenfeld Lab; Ron Lauck; Sybil Seitzinger; Todd Kana and Horn Point Laboratory; Rob Miskewitz; Daniel Gimenez; Frank Gallagher; the Rutgers Center for Remote Sensing and Spatial Analysis; Jonathan LaFond; and the staff at Teaneck Creek Conservancy for assistance with field, lab, and analytical work.

FLOODED CONDITIONS RESULT IN LOW NO_3^- , LOW N_2 , AND HIGH NH_4^+

Triangles – $(N_2 / Ar)_{sat}$