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Abstract

Global ecosystem has been intensively modified by human activities. To address the structural and functional complexity of human-dominated terrestrial ecosystem, a hierarchical patch dynamic model (HPDM) that couples the carbon/water/nitrogen processes 

is developed. Based on the hierarchy theory (Simon 1962; Wu 1999), 7 hierarchical levels,  each of which is nested in the higher level, are modeled: plant organ, plant, population, land-cover/ecosystem, land-use, landscape, and region. Structure, dominant processes, 

and anthropogenic drivers for these subsystems were identified and addressed in the model. 

The model was parameterized, validated, and applied to the Phoenix metropolitan area, AZ. Model simulations revealed the spatial patterns of the carbon pools, and estimated the total ecosystem carbon storage to be 16.8 T g (1 T = 1012) in Phoenix. Among 

Landuse Functional Types (LUFTs), undisturbed desert had the largest C storage. Scenario experiments also highlighted the importance of landcover managements (e.g. irrigating, fertilization) to the carbon balance of desert cities like Phoenix.

Modeling the Hierarchical Structure of land ecosystem  (model description)
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Figure 4, Landscape structure of Phoenix 

[adapted from Buyantuyev & Wu (2007)]
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Figure 5, Land cover composition of major  LUFTs of Phoenix 

[CAP LTER  200-survey (Hope, Grimm, et al., 2000-)]

Managements Treatments Sources

Fertilization 7.5 gN/m2 Milesi et al (2005)

Irrigated LCFT
Lawn, agriculture, urban trees 
(only deep root)

Lawn clipping Lawn: every 10 days Survey by Xiaoli Dong

Tree pruning intensity
Calibration, reduce NPP 
(street tree) by 25%

Stabler and Martin 
(2004) and Nowak et 
al. (2002)

Tmax of irrigated lawn
5 Celsius degree cooler than 
other LCFTs

Hall et al. (2008)

Woody litter 
treatment

CWD will be pulverized and 
reapplied to the soil as 
mulches

Nowak and Crane 
(2002)

Table 2. Land cover managements

Validation PFTs against Ameri Flux daily NEE (gC/m2) data
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ARM-SGP, C3 crop 2003
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Results and Analysis

3, Simulation design

Scenarios Description Research objectives

s0 CAP LTER 2000 (control scenario) To quantify C storage of Phoenix ecosystem

s1
Replace Mesic residential -> Xeric residential; Cultivated 
grass(i.e. golf courses) -> Desert 

To investigate the impacts of urban planning (e.g. altering 
landscape structure to improve water use efficiency) on C

s2
No urban-induced environmental change (CO2: -16 
ppmv, or -4%; N deposition: -0.34 gN/m2/yr, or -33%)

To investigate the impacts of urban-induced environmental 
changes on urban C balance (e.g. Shen et al. 2008)

s3
No landcover managements (irrigation, fertilization, 
pruning) (Table 1)

To investigate the impacts of landcover managements on 
urban C balance
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Figure 3 Model validation. NEE: Net Ecosystem Exchange (g C/m2/day)

Figure 7, NPP and carbon (C) storage of the 

Phoenix Metropolitan area (unit: 1012 g C).
Fig 8. Distribution of carbon storage among 

landuse functional types.

* The carbon density of top soil (10 cm) is based on the results of the hierachical bayesian model estimation by Kaye et al. (2008).

Figure 10, Compare model prediction with results from empirical studies. (a) and (b) correlation between model predicted NPP and the annual 

NDVI x PAR (Buyantuyev and Wu 2009); (c) compare soil organic carbon (SOC) and vegetation carbon (VEGC) against observed carbon 

density in CAP LTER [data sources: (1) Jenerette et al., 2006; (2) Kaye et al., 2008; (3) Melissa, unpublished data based on the 200-survey].

Fig 9. Spatial distribution of NPP  and carbon pools. For annual carbon balance, negative value indicates carbon loss in response to climate changes.
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s2: No urban-induced changes s3: No ecosystem managements

Figure 11, Simulating the impacts of landscape planning, urban-

induced environmental changes, and landcover managements on the 

carbon balance of the Phoenix ecosystems.
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HIERACHICAL PATCH DYNAMIC MODEL
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* LCFT: Land cover functional type; PFT: Plant functional type

Process / controlsHierarchical structureInputs

Global change dataset: climate, CO2, N deposition, O3

Land-use 
management 
parameters

Regional Land-use 
Change

Urban landscape 
datasets 

Urban-induced changes:

UHI, air pollution, etc.

Biophysical constrains:

e.g. elevation, soil etc.

Hierarchical 
Level

Subcomponent Processes
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Anthropogenic Drivers
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LSFTs:
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Natural landscapes
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conversion etc.

Land-use changes in 
response to economic 
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Landscape (LSFT)
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cooling effect due to 
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Plant organs :
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Cultivar with modified 
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Organ
Organic Matter  
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Figure 2, Model structure

Table 1, Description of the hierarchical structure and key processes in the model

Figure 1, Illustration of the hierarchical 

structure as modeled by the HPDEM

(Outputs: Carbon, water, nitrogen fluxes (daily) and pools for each hierarchical level.)

1, Parameterization

2, Model inputs (Figure 6)

Spatial resolution: 1 km.

Spatial extent: CAP LTER

Temporal resolution: daily

Temporal extent: 2000 - 2005

Table 3, Scenario design
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Fig 9. Carbon density of different plant 

functional types (unit: g C / m2)
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Discussion and conclusions:

1, Urban ecosystem (vegetation and soil) accounts for an important share of 

the total carbon storage in urban as indicated by this study and other studies 

(Churkina et al. 2009) .

2, The complex landscape structure and interactions among natural 

environments and human activities require spatial-explicit and process- based 

approaches/tools (such  as the HPDEM)  in the urban biogeochemical studies.

3, Our study results is comparable to field observations and the results of  

remote sensing studies. We found that about 16.8 Tg C was stored in the urban 

ecosystem of the Phoenix Meteropolitan Area, majority of which was stored in 

the soil. While the desert shrublands accounted for the largest carbon pool 

size, the urban forest has much higher carbon density.

4, Urban induced environmental changes (elevated CO2 and N deposition) 

increased carbon storage and productivity of urban vegetations. However, 

human managements such as irrigation and fertilization have stronger impacts 

on the carbon balance of the urban ecosystem.


