

School of Geographical Sciences & Urban Planning

Abstract

The relationship between land surface temperature (LST) and characteristics of the urban land system has received increasing attention in urban heat island research, especially for desert cities. In this study, we explore the effects of land system architecture—composition and configuration of different land-cover classes—on LST in the central Arizona-Phoenix metropolitan area at a fine-scale resolution, focused on the composition and configuration of single family residential parcels.

A 1 m resolution land-cover map is used to calculate landscape metrics at the parcel level, and 6.8 m resolution data from the MODIS/ASTER are employed to retrieve LST. In addition, socio-economic factors are employed as explanatory variables to help control for potential neighborhood effects. Ordinary Linear Squares regression models examine the effects of landscape configuration on LST at the parcel scale, controlling for the effects of landscape composition and neighborhood characteristics. Results show that the configuration of parcels affects LST, revealing significant variable relationships between that architecture and LST at nighttime and daytime, and the role of the neighborhood effects on the outcomes.

Parcel-Level Land Architecture and Land Surface Temperature in the Phoenix Metropolitan Area

Xiaoxiao Li¹, Yun Ouyang¹, Billie Turner II^{1,2}, Sharon Harlan³, Anthony Brazel² ¹ School of Sustainability, Arizona State University ² School of Sciences and Urban Planning, Arizona State University ³ School of Human Evolution and Social Change, Arizona State University

Results		
	Variable	
Parcel variable	logPLAND	
	logLSI	
	logPD	
	logFRAC	
	logCONTA	
	With pool	
Neighborhood variable to control neighborhood effect (dummy variables)	High incon	
	Low incom	
	City core (
	Fringe (vs	
	Retiremen	
	over 55)	
PLAND: Percent of landscape	L	
PD: Patch density	E	

FRAC: Fractal dimension **CONTAG:** Contagion 0.4315 **R** Square **R** Square Adjusted 0.4308

Table 1: The result of regression model 1. Model 1 shows the effects of **aggraded** class configuration on **daytime** surface temperature by controlling for aggraded class composition (PLAND) and neighborhood characteristics.

	Variable	Coefficient	Std Error	t statistic	p-value	std coefficient	VIF
Parcel variable	logPLAND_Building	0.041947	0.002524	16.62	<.0001	0.140976	1.61694
	logPLAND_Soil	0.093101	0.005645	16.49	<.0001	0.195938	3.17129
	logPLAND_Tree	-0.02156	0.002267	-9.51	<.0001	-0.12759	4.04556
	logPLAND_Grass	-0.00197	0.001615	-1.22	0.2218	-0.01149	1.98637
	logLSI_Soil	-0.08918	0.009832	-9.07	<.0001	-0.12457	4.23762
	logLSI_Tree	0.028936	0.006153	4.7	<.0001	0.063185	4.05603
	logPD_Building	0.009742	0.002501	3.9	<.0001	0.035103	1.82417
	logPD_Grass	0.013641	0.002587	5.27	<.0001	0.045548	1.67610
	logED_Soil	0.017964	0.007526	2.39	0.017	0.030757	3.73005
	LogFRAC_Tree	0.083128	0.017865	4.65	<.0001	0.032728	1.1114
	LogFRAC_Grass	0.080172	0.014642	5.48	<.0001	0.038164	1.09149
	With pool (vs Without pool; dummy)	-0.01442	0.000633	-22.78	<.0001	-0.17403	1.31179
	High income (vs Middle income)	-0.02371	0.000975	-24.33	<.0001	-0.27696	2.9105
	Low income (vs Middle income)	0.034552	0.001137	30.39	<.0001	0.338885	2.79383
Neighborhood variable to control	City core (vs Suburban)	-0.011	0.001223	-9	<.0001	-0.09488	2.49815
neighborhood effect (dummy variables)	Fringe (vs Suburban)	-0.00819	0.000959	-8.54	<.0001	-0.09495	2.77737
	Elder age group (medium age over 55)	0.027925	0.000922	30.27	<.0001	0.267596	1.75560
PLAND: Percent of landscape PD: Patch density	LSI: Landscape shape index ED: Edge density						

0.4357 **R** Square 0.4350 **R** Square Adjusted

Table 2: The result of OLS regression model 2. Model 2 shows the effects of **class specific** configuration on **daytime** surface temperature by controlling for class specific composition (PLAND) and neighborhood characteristics.

Conclusions

Our research corroborates emerging research finding that land system architecture affects LST. Our work elaborates those findings, however, by demonstrating that (1) controlling for neighborhood effects, land composition and configuration are important and significant factors affecting LST at the SFR or parcel level, and (2) controlling for land composition, land configuration at the landscape level (parcel mosaic) proves to be an important and significant factor affecting LST. By doing so, we find that the interplay among explanatory variables result in their different directional influences on LST at different times of day, as well as different landscape metric levels. Taken together, the results point to the need for more research on the land architecture of the city-scape, its impacts of the UHI, possible use to reshape the configuration of the city-scape to achieve a more temperature friendly outcome for desert cities, and tradeoffs and synergies with other environmental services.

Acknowledgement

Central Arizona-Phoenix Long-Term Ecological Research (CAP LTER) and undertaken through its affiliated Environmental Remote Sensing and Geoinformatics Lab (ERSG).

	Coefficient	Std Error	t statistic	p-value	std coefficient	VIF
g	0.037869	0.002602	14.55	<.0001	0.127271	1.705402
	0.118276	0.004524	26.14	<.0001	0.248919	2.022317
	-0.01554	0.002062	-7.54	<.0001	-0.09197	3.322152
	0.001219	0.001649	0.74	0.4599	0.007097	2.056935
	-0.07985	0.00875	-9.13	<.0001	-0.09851	2.598647
	0.021688	0.004091	5.3	<.0001	0.054657	2.370751
	0.217428	0.032333	6.72	<.0001	0.048449	1.157778
	-0.03041	0.010637	-2.86	0.0043	-0.0355	3.439215
nout pool; dummy)	-0.01399	0.000646	-21.65	<.0001	-0.16883	1.356122
liddle income)	-0.02358	0.000974	-24.2	<.0001	-0.27539	2.888504
iddle income)	0.034098	0.001128	30.24	<.0001	0.334434	2.727641
rban)	-0.01008	0.001206	-8.36	<.0001	-0.08695	2.415002
in)	-0.00964	0.000955	-10.09	<.0001	-0.11183	2.738851
unity (medium age	0.02969	0.000898	33.08	<.0001	0.284511	1.649992

Landscape shape index

Edge density

