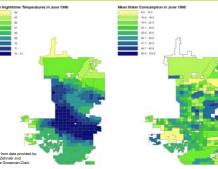

The Impact of Urban Heat Islands on Water Use: The Case of the Phoenix Metropolitan Area

Subhrajit Guhathakurta¹, Patricia Gober², and Jamie Patterson² ¹School of Planning and Global Institute of Sustainability, ²School of Geographical Sciences and DCDC

Decision Center for a Desert City, Arizona State University


ABSTRACT

Sources and Impacts of Heat Island Effects

Metropolitan Phoenix's urban heat island (UHI), the phenomenon of warmer temperatures in the urban core than in the surrounding rural countryside, has been linked to an increase in summer nighttime temperatures of almost 10° Fahrenheit during the past 50 years (Baker et al., 2002; Brazel et al., 2000). Although changes in land use and land cover associated with urbanization have increased urban temperatures overall, a distinct spatial variation in nighttime minimum temperatures can be observed. The UHI effect is strongest in the urban core and declines toward the urban fringe and surrounding rural countryside (Brazel, et al., 2006). We use this spatial variation in June nighttime temperatures examine whether the UHI affects residential water use, controlling for relevant household and housing attributes. *Results of the statistical analysis demonstrate that a rise of 1° F is associated with an average monthly increase of 647 gallons for a typical single-family unit, all else remaining the same.*

The Data on Variation in Temperature and Water Demand by Census Tract these Neglectives Temperatures in June 1986 Table 1: Descriptive statistics on dependent and significant explanatory Table 1: Descriptive statistics on dependent and significant explanatory

	Minimum	Maximum	Mean	Std. Deviation	Source
Gallons of water per SF unit in June	7480.50	80415.38	17025.42	6711.52	Water Resourc Department, Ci of Phoenix
mean low temp (5 am)	64.57	72.77	70.09	1.87	Grossman-Cla and Zehnder
difference in high and low temperature	17.08	22.37	18.59	1.21	Grossman-Cla and Zehnder
median household income in CT	.00	98007.00	41317.56	19022.89	US Census Bureau, 2000 Summary File
median number of people in housing unit	2.00	8.40	4.99	1.23	US Census Bureau, 2000 Summary File
mean lot size in CT	5257.82	83044.11	10428.40	6933.58	US Census Bureau, 2000 Summary File
Average pool size	0	832.00	399.54	133.17	Maricopa Cour Assessors Dat
Average age of SF units	1.87	388.63	51.11	45.23	Maricopa Cour Assessors Dat
Percent of SF unit with pool	0	1.00	.25	.21	Maricopa Cour Assessors Dat
Percent of SF units with Evap. coolers	.00	1.00	.26	.28	Maricopa Cour Assessors Dat
SFNDVI	.00	.41	.17	.11	Authors' calculations fro Grossman-Cla and Zehnder
PCTOWN	0	1.00	.6276	.25	US Census Bureau, 2000 Summary File
Whether in SRP supplied areas	0	1	.44	.50	Salt River Proi
mean land value in CT	7372.73	217093.63	24778.71	20516.44	Maricopa Cour Assessors Dat

variables

Empirical results

Dependent: Log of gallons of wat tract in June 1998	er consumed l	by a ty	pical sin	gle-family un	it by c	ensus
	Model 1			Model 2		
Explanatory variables	в	Beta	t	в	Beta	t
(Constant)	5.960**		10.435	9.199**		43.708
Median household income in CT	-1.19x10 ⁻⁶	-	-1.450	-1.60x10 ⁻⁶	-	-1.912
Median number of people in housing unit	.075**	.314	3.214	.066**	.278	2.769
Mean lot size in CT	1.34x10 ⁻⁵	.319	4.555	1.37x10 ⁻⁵	.325	4.51
Average pool size	.001**	.215	4.256	.001**	.225	4.33
Mean age of SF units	.001**	.157	2.555	.001**	.203	3.26
Percent of SF units with pool	.160	.117	1.588	.211**	.155	2.06
Percent oh SF units with Evaporative coolers	.246**	.236	3.865	.288**	.277	4.45
SFNDVI (vegetation index)	.253*	.092	1.854	.357**	.129	2.54
Percent housing units owner occupied	.128	.108	1.416	.104	.088	1.12
Whether in SRP supplied areas	.032	.055	1.201	.038	.066	1.37
Mean land value in CT	3.11x10 ⁻⁶	.218	2.764	2.7x10 ⁻⁶ **	.192	2.37
Minimum low temp (5 am)	.038**	.243	4.818			
Difference in high and low temperature				031**	.127	-2.790

 $Note: \qquad Model \ 1 \ R^2 = 0.64; \ Model \ 2 \ R^2 = 0.62; \ N = 287; \ ** \ p < .05; \ * \ p < .125; \ p < .125;$

Acknowledgment

This material is based upon work supported by the National Science Foundation under Grant No. SES-0345945 Decision Center for a Desert City (DCDC). Any opinions, findings and conclusions or recommendation expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation (NSF).

