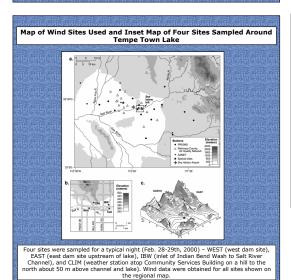
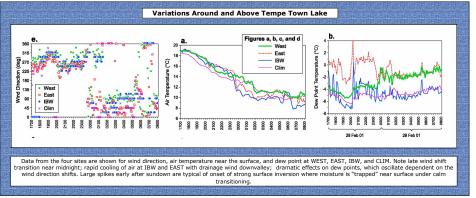
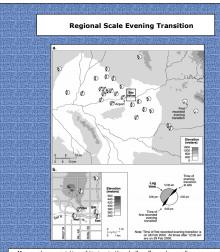

THE PHOENIX EVENING TRANSITION: A CLIMATE PERSPECTIVE


A.J. Brazel & N.L. Selover, Department of Geography & Office of Climatology, Arizona State University


BACKGROUND AND PURPOSE

In hilly areas and climates prone to local controls, thermally-induced wind systems develop (e.g., Fernando et al, 2001 and Hunt et al, In Review). Two "transitions" occur – morning and evening – when winds reverse from downvalley to upvalley (morning) and upvalley to downvalley (evening). Climate components (and related environmental processes) are impacted by these transitions; and the unique geology/geography of the area controls the timing. Generally, flow depths at night are very shallow near the ground (ca. 0-40 m) as illustrated by the EFD group at ASU. Numerical modelers are attempting to incorporate these processes at ever increasing local scales. This poster demonstrates typical processes of the evening transition, showing results from a local field exercise around Lake and in the broader region of the Valley of the Sun. Very few weather sites are in river channels to observe this phenomenon. This topic is the subject of an ongoing manuscript by Brazel et al (in progress).



REFERENCES

- 1. Brazel, A.J., J.C.R. Hunt, H.J.S. Fernando, and N. Selover. In Progress. The Evening Transition Phenomenon in winter in Phoenix, AZ and Impacts on Surface Climate, *Journal of Applied Meteorology*.
- Fernando, H.J.S., S.M. Lee, J. Anderson, M. Princevac, E. Pardyjak, and S. Grossman-Clarke. Urban Fluid Mechanics: Air Circulation and Contaminant Dispersion in Cities, Environmental Fluid Dynamics, Vol. 1, 107-164.
- 3. Hunt, J.C.R., H.J.S. Fernando, A.A. Grachev, E. P. Pardyjak, N.S. Berman, and J. Anderson. Slope-breezes and Weak Air Movements in a Wide Enclosed Valley, *Journal of Applied Meteorology* (In Review).

Map a. shows variation of timing in the shallow flows downvalley, compared to transitions in the upper east valley locales. Map b. shows the four sites around Tempe Town Lake. The rate of the transition change can be described crudely as a function of a site's elevation explaining about 60% of the variance in the timing the wind shift. However, there are local boundary layer impacts from land use and exact site morphology, as learned from the Tempe Town Lake exercise (e.g., at the hilltop CLIM site - some 50 m elevation above the others nearby- evening transition lags way behind in the timing of the wind shift). Locational context in this regional picture is important to specifying the nature of this desert's evening transition. Long term data from Sky Harbor Airport does not fully represent the local variability.

CONCLUSION

- a) Evening transition processes are being modeled numerically. There is a need to understand local scale processes further.
- b) The transition presets the course of cooling rates, timing of temperature and dew point variations, station separation one from another in spatial climatic variations, and significantly controls the air quality environment.
- c) Unlike alpine areas, and many other sharp terrain environments, the transition is delayed well into the evening hours in winter, long after sundown, in the Phoenix area. This may be explained by the gentle sloping terrain with abrupt breaks in the terrain well to the north and east of the city.
- d) CAPLTER's major weather site of the airport (used for historical assessment) must be critically analyzed further for the local effects of the kind found around Tempe Town Lake's terrain, since now the site is immediately adiacent to the Salt River's channel by the airport site.

